134. Regioselektive 1,3-dipolare Cycloadditionen von Thiocarbonyl-yliden mit 1,3-Thiazol-5(4*H*)-thionen

von Grzegorz Mlostoń*

Department of Organic Synthesis, University of Łódź, Narutowicza 68, 90-136 Łódź, Polen

und Anthony Linden¹) und Heinz Heimgartner*

Organisch-chemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich

(29. VII. 91)

Regioselective 1,3-Dipolar Cycloadditions of Thiocarbonyl Ylides with 1,3-Thiazole-5(4H)-thiones

The thiocarbonyl ylides 13 and 1,3-thiazol-5(4H)-thiones 1 undergo a smooth reaction to yield spirocyclic 1,3-dithiolanes 14–16 (*Schemes 4–6*). The 1,3-dipolar cycloadditions occur in a regioselective manner, but the orientation of the thiobenzophenone-S-methylide (13b) differs from that of the cycloalkane thione-S-methylides 13a and 13c. Whereas the 1,3-cycloadduct with 13b is formed in accordance with frontier-orbital considerations, the inverse orientation in the reactions with 13a and 13c most likely is the result of steric hindrance in the transition state. The thiocarbonyl ylides have been prepared *in situ* from the corresponding 2,5-dihydro-1,3,4-thiadiazoles 12. The more stable aliphatic precursors 12a and 12c undergo decomposition at 50°, the unstable 12b at -30° .

1. Einleitung. – Die exocyclische (C=S)-Bindung der 1,3-Thiazol-5(4H)-thione 1, für die eine einfache und ergiebige Synthese beschrieben worden ist [1] [2], hat sich als reaktives Dipolarophil und Dienophil erwiesen (s. [3] [4]). Als 1,3-Dipole sind bisher vornehmlich Nitrilium-betaine 2 (Nitril-oxide, -imine und -ylide) mit 1 umgesetzt worden. Die dabei in hohen Ausbeuten gebildeten Spiro-heterocyclen 3 (1,6-Dithia-3,8-diazaspiro[4.4]nonadiene sowie 4-Oxa- und 4-Aza-Analoga) erwiesen sich als überraschend stabil (Schema 1). Im Gegensatz dazu gehen die (1:1)-Addukte 5 analoger, früher be-

1) Ausführung der Röntgen-Kristallstrukturbestimmungen.

schriebener Umsetzungen mit 1,4,2-Dithiazol-5-thionen (4, a-b-c = S-N=CAr) [5] oder 1,2-Dithiol-3-thionen (4, $a-b-c = CR^1=CR^2-S$) [6] leicht eine Folgereaktion zu den 5gliedrigen Heterocyclen vom Typ 6 ein (s. a. in [3] zit. Lit.).

Ebenfalls über eine 1,3-dipolare Cycloaddition reagiert 1a ($\mathbb{R}^1 = \mathbb{Ph}$, $\mathbb{R}^2 = \mathbb{R}^3 = \mathbb{Me}$) mit organischen Aziden bei 90° zu 1,3-Thiazol-5(4*H*)-iminen 8 [7] (*Schema 2*). Dabei zerfällt das Cycloaddukt 7 schon unter den Reaktionsbedingungen spontan unter Bildung von N₂ und S.

Als weitere 1,3-dipolare Verbindung haben wie CH_2N_2 mit **1a** umgesetzt. Dabei ist aus der Reaktion in etherischer Lösung bei -78° die Dispiro-Verbindung **10** isoliert worden²). In Analogie zu Umsetzungen von z. B. Thiobenzophenon oder Adamanthion mit CH_2N_2 [8] [9] (s. a. [10]) postulieren wir als Zwischenprodukt der Reaktion mit **1a** das Thiocarbonyl-ylid **9**, das mit einem zweiten Molekül **1a** eine 1,3-dipolare Cycloaddition zu **10** eingeht. Die Umsetzung von Thioketonen und Diazo-Verbindungen zu 1,3-Dithiolanen ist schon vor 60 Jahren beschrieben worden [11] [12] (s.a. [13]). Der mechanistische Verlauf dieser heute als *Schönberg*-Reaktion bezeichneten Umsetzung [9] ist durch ausführliche Untersuchungen von *Huisgen* und Mitarbeitern aufgeklärt worden [10]; die Bildung des Thiocarbonyl-*S*-methylids erfolgt über eine 1,3-dipolare Cycloaddition von CH_2N_2 an die (C=S)-Bindung und N₂-Elimination aus dem entstandenen 2,5-Dihydro-1,3,4-thiadiazol. Die Umsetzung von Thioketonen mit Diazo-Verbindungen stellt einen der einfachsten Zugänge zu Thiocarbonyl-yliden dar³).

Der beobachteten Bildung von 10 nachgehend (*Schema 2*) haben wir die 1,3-dipolare Cycloaddition von Thiocarbonyl-yliden an die (C=S)-Bindung von 1,3-Thiazol-5(4H)-

²) Die Veraligemeinerung dieser Reaktion sowie deren Grenzen werden zur Zeit untersucht.

³) Eine zweite einfache Methode zur Herstellung von Thiocarbonyl-S-methyliden via Umsetzung von Thioketonen mit (Trimethylsilyl)methyl-trifluoromethansulfonat (= (Trimethylsilyl)methyl-triflat) ist in [14] beschrieben. Von der selben Arbeitsgruppe stammt auch die Erzeugung von Thiocarbonyl-yliden aus Organosilicium-Verbindungen [15].

thionen 1 untersucht. Dabei interessierte uns insbesondere, ob diese Additionen regioselektiv verlaufen. Die früher beschriebenen Ergebnisse der Reaktionen von Benzonitrilyliden 2 ($X = CR^1R^2$) mit 1a liessen erwarten, dass auch die Regioselektivität der Addition von Thiocarbonyl-yliden empfindlich auf elektronische und sterische Effekte von Substituenten des Dipols anspricht.

2. Cycloadditionen mit Thiocarbonyl-yliden. – Als Thiocarbonyl-ylide sind die Vertreter 13a-c ausgewählt und aus den entsprechenden 2,5-Dihydro-1,3,4-thiadiazolen 12a-c *in situ* erzeugt worden [8–9] [16–18] (*Schema 3*). Bei den aus der Umsetzung von CH_2N_2 mit 2,2,4,4-Tetramethyl-3-thioxocyclobutanon (11a) und Adamantanthion (11c) hergestellten Thiadiazolen 12a bzw. 12c handelt es sich um relativ stabile, in reiner Form isolierbare Verbindungen. Im Gegensatz dazu zersetzt sich 2,5-Dihydro-2,2-diphenyl-1,3,4-thiadiazol (12b) schon bei tiefer Temperatur unter N_2 -Abspaltung und Bildung von 13b. Es wurde deshalb *in situ* aus Thiobenzophenon und CH_2N_2 bei -65° erzeugt und bei - 30° mit den 1,3-Thiazol-5(4*H*)-thionen 1 umgesetzt.

Die Umsetzung von 12a (1,4 mmol) mit 1a-e (1 mmol) erfolgte in THF bei 50°. Dabei entwickelte sich N_2 , dessen Menge volumetrisch bestimmt wurde. Nach *ca.* 3 h war jeweils die N_2 -Entwicklung beendet; die Menge des freigesetzten N_2 entsprach in allen Fällen einem mol-equiv. bezogen auf 12a. Das Reaktionsgemisch wurde mittels 'H-NMR analysiert. Die Reaktionen mit den symmetrischen 1a-d führten in 79–87% Ausbeute zu den einheitlichen (1:1)-Addukten 14a-d (*Schema 4*). Im Falle des chiralen, als Racemat eingesetzten 1e wurden zwei isomere Addukte im Verhältnis 9:1 gebildet.

Scheme 4

Die Strukturen der Produkte wurden aufgrund ihrer spektralen Daten hergeleitet⁴) (s. *Exper. Teil*). Für den Entscheid, welches Regioisomere sich gebildet hat, ist vor allem das ¹³C-NMR-Spektrum hilfreich. In allen isolierten (1:1)-Addukten absorbiert die CH₂-Gruppe des Dithiolan-Ringes im Bereich von 52,0–47,1 ppm, was in guter Übereinstimmung mit anderen 2,2,4,4-tetrasubstituierten 1,3-Dithiolanen steht [9] [16a]. Die Struktur **14a** wurde durch eine Röntgen-Kristallstrukturbestimmung bewiesen (*Fig. 1* und *Kap. 3*).

Die beiden (1:1)-Addukte aus der Umsetzung von 1e und 12a wurden aufgrund ihrer ¹H- und ¹³C-NMR-Spektren als 14e–I und 14e–II identifiziert. Dass es sich um Diastereoisomere des selben Additionstypus und nicht um Regioisomere handelt, wird durch die chemische Verschiebung der CH₂-Gruppe im ¹³C-NMR (52,0 bzw. 47,1 ppm) bestätigt⁵). Die Zuordnung der *cis*- bzw. *trans*-Struktur ist schwierig⁶). Deshalb wurde eine Röntgen-Kristallstrukturbestimmung von 14e–I durchgeführt (*Fig. 2* und *Kap. 3*). Aus *Fig. 2* ist ersichtlich, dass es sich dabei um das *trans*-Isomere handelt.

⁴) Alle Addukte lieferten korrekte Elementaranalysen für C, H, N und S ($\pm 0.3\%$).

⁵) Die CH₂-Gruppe eines *via* den regioisomeren Übergangszustand gebildeten Isomeren würden bei *ca*. 30 ppm absorbieren (s. Verbindungen **15** und [9]).

⁶) Die folgenden ¹H-NMR-Daten liessen uns vermuten, dass es sich beim Hauptprodukt **14e–I** um das *cis*-Isomere (Ph–C(10) und S–C(6) *cis* bezüglich 4,5-Dihydro-1,3-thiazol-Ring) handelt: Die Dithiolan-CH₂-Gruppen von **14e–I** und **14e–II** absorbieren als *AB*-Systeme bei 2,73 und 2,39 ppm bzw. 3,585 und 3,575 ppm (J_{AB} jeweils 12,0 Hz). Da in den Addukten **14a–c** ($R^2 = R^3 = Me$), bei denen sich die Dithiolan-CH₂-Gruppe jeweils *cis* zu einer Me-Gruppe an C(10) befindet, H_A und H_B dieser CH₂-Gruppe deutlich verschiedene chemische Verschiebungen aufweisen ($\Delta \delta = 0, 18-0, 24$ ppm), nahmen wir an, dass dem Isomeren **14e–I**, mit einem $\Delta \delta$ (H_A,H_B) = 0,34 ppm, die *cis*-Konfiguration zukommt. Im *trans*-Isomeren **14e-II** wäre dagegen das zur Ph-Gruppe an C(10) *cis*-ständige Methylen-H nach tiefem Feld verschoben, so dass $\Delta \delta$ (H_A,H_B) sehr klein wird (*ca*. 0,01 ppm).

Die Umsetzungen von **1a–e** mit dem Thiobenzophenon-S-methylid (**13b**) erfolgten bei -30° . Dabei wurde das aus 1,2 mmol Thiobenzophenon (**11b**) und CH₂N₂ in Et₂O bei -65° hergestellte **12b** bei dieser Temperatur mit einer Lösung von **1** in CH₂Cl₂ versetzt und auf -30° erwärmt. Der Verlauf der Reaktion wurde wiederum anhand der N₂-Entwicklung verfolgt; nach 3 h war diese beendet. Die Analyse des Reaktionsgemisches mittels ¹H-NMR zeigte, dass im Falle der achiralen 1,3-Thiazol-5(4*H*)-thione **1a–d** jeweils nur ein Addukt gebildet wird, mit **1e** dagegen ein *ca*. (1:2)-Gemisch zweier isomerer Verbindungen.

Bei den in 60–82% Ausbeute isolierten Cycloaddukten mit **1a–d** handelt es sich um die 4,4-disubstituierten 1,3,6-Trithia-8-azaspiro[4.4]non-7-ene **15a–d** (*Schema 5*). Die Strukturzuordnung beruht wiederum auf der chemischen Verschiebung der Dithiolan-CH₂-Gruppe im ¹³C-NMR-Spektrum (30,4–29,3 ppm, vgl. [9] [16a]). Auch die beiden diastereoisomeren Addukte **15e–I** und **15e–II** entsprechen dem selben Additionstypus (δ (CH₂) = 30,8 bzw. 29,7 ppm). Bei welchem Produkt es sich um das *cis*- bzw. *trans*-Isomere handelt, konnte dagegen nicht festgelegt werden. Aufgrund der Ähnlichkeit der *AB*-Systeme für die CH₂-Gruppe von **15a** (3,66 und 3,52 ppm, *J* = 10,0 Hz) und **15e–I** (3,77 und 3,40 ppm, *J* = 10,0 Hz) wird angenommen, dass es sich bei letzterem um das *cis*-Isomere handelt. Dies ist wiederum das in geringerer Menge gebildete Produkt.

1390

Die Struktur von 15a ist durch eine Röntgen-Kristallstrukturbestimmung bewiesen worden (Fig. 3 und Kap. 3).

Das Thiadiazol **12c** setzte sich mit **1a** in THF bei 50° zum (1:1)-Addukt **16** um (*Schema 6*). Nach 3 h lag laut ¹H-NMR das Produkt in 94% Ausbeute vor; übliche Aufarbeitung lieferte 80% **16** als zähes Öl. Die chemische Verschiebung der Dithiolan-CH₂-Gruppe im ¹³C-NMR (47,8 ppm) ist für die Additionsrichtung bestimmend.

3. Röntgen-Kristallstrukturbestimmungen von 14a, 14e–I und 15a (s. Tab., Fig. 1–3).⁷). – Intensitätsmessung und Verfeinerung. Alle Intensitätsmessungen wurden auf einem Nicolet-R3-Vierkreisdiffraktometer im 'Wyckoff- ω -scan'-Modus mit MoK_a-Strahlung (Graphit-Monochromator) durchgeführt. Die Intensitäten der Reflexe wurden Korrekturen für Lorentz- und Polarisationsfaktoren, für Absorptionen (empirische Korrekturen, Programm DIFABS [20]) und im Falle von 14e–I und 15a für sekundäre Extinktion unterzogen (Koeffizient 7,9 × 10⁻⁸ bzw. 7,3 × 10⁻⁸). Die Strukturaufklärung mit direkten Methoden erfolgte mit dem Programmsystem SHELXS-86 [21]. Die kristallographischen Daten sind in der Tabelle, die Molekülstrukturen in den Fig. 1–3 wiedergegeben.

	14a	14e-I	15a
kristallisiert aus	МеОН	MeOH/CH ₂ Cl ₂	i-PrOH
Temp. [°C]	-60 ± 1	-60 ± 1	-60 ± 1
Kristallsystem	monoclin	monoclin	orthorhombic
Raumgruppe	$P2_{1}/c$	$P2_1/c$	$Pna2_1$
Z	4	4	4
Atome in der asymmetrischen Einheit	C ₂₀ H ₂₅ NOS ₃	C ₂₅ H ₂₇ NOS ₃	C ₂₅ H ₂₃ NS ₃
Formelgewicht	391,60	453,67	433,64
ber. Dichte [gcm ⁻³]	1,314	1,294	1,359
Gitterparameter			
Zahl der zentrierten Reflexe	25	25	25
Bereich [°]	$36 < 2\theta < 38$	$32 < 2\theta < 34$	$23 < 2\theta < 38$
a [Å]	7,298 (1)	11,110 (2)	18,353 (4)
<i>b</i> [Å]	24,084 (3)	14,605 (3)	12,075 (2)
<i>c</i> [Å]	11,824 (2)	14,723 (2)	9,565 (2)
α [°]	90,0	90,0	90,0
β[°]	107,80 (1)	102, 93 (1)	90,0
γ [°]	90,0	90,0	90,0
<i>V</i> [Å ³]	1978,8 (6)	2328,4 (7)	2119,6 (6)
linearer Absorptionskoeffizient			
$\mu(\mathrm{Mo}K_{\alpha}) [\mathrm{cm}^{-1}]$	3,668	3,212	3,466
min, max	0,900, 1,108	0,806, 1,141	0,866, 1,095

Tabelle.	Kristallogra	phische .	Daten i	für die	Verbind	ungen 1	4a. 14e	e–I und	15a
	ALL FOR STRUCK STRUCK		~		,				

⁷) Atomkoordinaten, Bindungslängen und -winkel sind beim Cambridge Crystallographic Data Center, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, England, deponiert.

	14a	14e-I	15a
Datensammlung			·······
$2\theta_{\max}$ [°]	55	60	55
Zahl der gemessenen Reflexe	5263	7879	3563
Zahl der symmetrieunabhängigen Reflexe	4553	6784	2888
Verfeinerung			
Zahl der verwendeten Reflexe $(I > 3\sigma(I))$	3623	5230	2136
Zahl der Variablen	326	380	351
Gewichtsschema, p für $1/w = \sigma^2 (F_0) + (pF_0)^2/4$	0,03	0,03	0,03
R	0,0306	0,0305	0,0342
R_{w}^{a})	0,0384	0,0384	0,0335
'Goodness of fit'	1,707	1,629	1,242
$\sigma(d(C-C))$ [Å]	0,002-0,003	0,001-0,003	0,004-0,007
$\Delta \rho$ (max) [eÅ ⁻³]	0,31	0,31	0,22
^a) Minimisierte Funktion $\Sigma w(F_0 - F_c)^2$.		······································	<u></u>

Tabelle (Forts.)

Alle schwereren Atome wurden mit anisotropen Temperaturfaktoren verfeinert. Alle H-Atome, mit Ausnahme von H(16) von **15a**, konnten durch Differenzelektronendichte-Berechnungen lokalisiert werden. Für **14a** und **14e–I** wurden die Lagen aller H-Atome mit individuellen isotropen Temperaturfaktoren verfeinert. Für **15a** wurde H(16) in einer berechneten Position (d(C-H) = 0.95 Å) mitgeführt und nur der Temperaturfaktor verfeinert, während alle übrigen H-Atome mit individuellen isotropen Temperaturfaktoren verfeinert wurden. Zur Verfeinerung wurden 'full-matrix least-squares'-Verfahren verwendet [22].

Die neutralen Streufaktoren für die schwereren Atome wurden aus [23] entnommen, diejenigen für H-Atome aus [24]. In F_c wurden anomale Dispersionseffekte berücksichtigt [25]; die Werte für $\Delta f'$ und $\Delta f''$ stammen aus [26]. Alle Berechnungen wurden unter Benützung des TEXSAN Software Pakets [27] durchgeführt.

4. Diskussion. – Die voranstehend beschriebenen Reaktionen zeigen, dass Thiocarbonyl-ylide 13 leicht mit der (C=S)-Bindung von 1,3-Thiazol-5(4H)-thionen 1 reagieren und via eine 1,3-dipolare Cycloaddition⁸) in guten Ausbeuten zu spirocyclischen 1,3-Dithiolanen führen. Einmal mehr wird damit offensichtlich, dass 1 ein sehr gutes Dipolarophil ist⁹). Bemerkenswert ist die beobachtete Regioselektivität der Cycloadditionen: Während mit dem Thiobenzophenon-S-methylid (13b) die 4,4-disubstituierten 1,3-Dithiolane 15 gebildet werden (Schema 5), liefert die Umsetzung mit den 'Cycloalkanthion-S-methyliden' 13a und 13c ausschliesslich die 2,2-disubstituierten 1,3-Dithiolane 14 bzw. 16 (Schema 4 und 6). Die Grenzorbitalbetrachtung ergibt, dass die Bildung von 15 den Erwartungen entspricht (Fig. 4).

Aus den berechneten Grenzorbitalenergien für 1 [7] [29] und 13b [14] [30] ist ersichtlich, dass es sich um eine (HOMO_{Dipol} – LUMO_{Dipolarophil})-kontrollierte Reaktion handeln muss. Aufgrund der Grösse der Koeffizienten dieser Grenzorbitale ist der zum Isomeren 15 führende Übergangszustand (*Fig. 4*) bevorzugt.

Im Gegensatz zu den Cycloadditionen von 13b, das auch mit andern Thiocarbonyl-Verbindungen ausschliesslich zu 1,3-Dithiolanen mit unsubstituierter $H_2C(2)$ -Gruppe

⁸) Aufgrund der vorliegenden Ergebnisse kann nicht entschieden werden, ob es sich um eine konzertiert verlaufende Reaktion oder um einen zweistufigen Prozess handelt, wie er von *Huisgen* und Mitarbeitern für einige Cycloadditionen mit Thiocarbonyl-yliden nachgewiesen worden ist [10] [18].

⁹) Die aussergewöhnliche dipolarophile Reaktivität von (C=S)-Derivaten, insbesondere von Thioketonen, ist von *Huisgen* und Mitarbeitern durch kinetische Messungen nachgewiesen worden [9] [28].

Fig. 4. Grenzorbitale für die Umsetzung von 1 mit 13b

führt [8] [9] [13] [14] [31], sind bei den Umsetzungen der S-Methylide von 2,2,4,4-Tetramethyl-3-thioxocyclobutanon 13a und Adamantanthion 13c mit Thiobenzophenon, Thioxanthion und Thiofluorenon jeweils zwei Cycloaddukte erhalten worden, die *via* regioisomere Übergangszustände entstehen [9] [16]. Für das Auftreten des zweiten Isomeren werden sterische Gründe verantwortlich gemacht, die konkurrierend zu den Grenzorbitalen die Energie des Übergangszustandes beeinflussen. Bei weiterer Zunahme der sterischen Hinderung, wie z. B. bei den Additionen mit den Dipolarophilen Adamantanthion und 2,2,4,4-Tetramethyl-3-thioxocyclobutanon, wird nur noch das *via* den sterisch günstigeren Übergangszustand gebildete 1,3-Dithiolan mit unsubstituierter H₂C(5)-Gruppe gebildet [9] [16]. Es überrascht deshalb nicht, dass die beiden Thiocarbonyl-ylide 13a und 13c mit 1,3-Thiazol-5(4H)-thionen 1 mit hoher Selektivät (>95%, NMR) zu den 1,3-Dithiolanen 14 bzw. 16 führen.

Eines Kommentars bedarf noch die Reaktion von 12a mit 1e, bei der die zwei diastereoisomeren (1:1)-Cycloaddukte 14e–I und 14e–II entstehen. Beim Hauptprodukt handelt es sich um das *trans*-Isomere (s. *Kap. 3* und *Fig. 2*). Der entsprechende Übergangszustand ist in *Fig. 5* skizziert. Dabei muss sich offensichtlich das Thiocarbonyl-ylid dem Thiazolthion-Ring von der Seite annähern, auf der sich die Ph-Gruppe befindet. Auch dafür müssen wohl sterische Faktoren verantwortlich sein.

Fig. 5

G. M. dankt der Polnischen Akademie der Wissenschaften für die finanzielle Unterstützung im Rahmen des Forschungsprogrammes PR 01.13.1.12, A. L. und H. H. danken dem Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung und der F. Hoffmann-La Roche AG, Basel, für finanzielle Unterstützung.

Experimenteller Teil

Allgemeines. Schmp.: Büchi SMP-20, in Kapillare, unkorrigiert. IR: Bruker IFS-45 oder Perkin-Elmer-325, in KBr; Angaben in cm⁻¹. NMR: bei ca. 25° in CDCl₃, δ in ppm relativ zu internem TMS (= 0 ppm). ¹H-NMR: Bruker WP-80 (80 MHz) oder Tesla BS-467 (60 MHz), J in Hz. ¹³C-NMR: Tesla BS-567A (25.16 MHz). MS: LKB-2091; Elektronenstoss-Ionisation (EI-MS) bei 70 eV; in m/z (rel. %).

Ausgangsmaterialien. Die 2,5-Dihydro-1,3,4-thiadiazole **12a-c** wurden wie früher beschrieben aus den entsprechenden Thioketonen durch Umsetzung mit CH_2N_2 hergestellt: 1,1,3,3-Tetramethyl-5-thia-7,8-diazaspiro[3.4]oct-7-en-2-on (**12a**; Schmp. 39–41° (Pentan, -76°) [16]); 2,5-Dihydro-2,2-diphenyl-1,3,4-thiadiazol (**12b**, nicht isolierbar, zersetzt sich schon bei tiefer Temperatur; *in-situ*-Herstellung nach [8]); 1,4-Dihydro-1,3,4-thiadia *azol-2-spiro-2'-tricyclo*[3.3.1.1^{3,7}]decan (Spiro[1,3,4-thiadiazolin-2,2'-adamantan], **12c**; Schmp. 36–38° (Pentan, -76°) [17]). Die Herstellung der verwendeten 1,3-Thiazol-5(4H)-thione erfolgte ebenfalls nach bekannten Vorschriften: 4,4-Dimethyl-2-phenyl-1,3-thiazol-5(4H)-thion (**1a**) [32]; 2-Benzyl-4,4-dimethyl-1,3-thiazol-5(4H)-thion (**1b**) [2]; 2-(tert-Butyl)-4,4-dimethyl-1,3-thiazol-5(4H)-thion (**1c**) [29]; 2-Phenyl-3-thia-1-azaspiro[4.4]non-1-en-4thion (**1d**) [29]; 4-Methyl-2,4-diphenyl-1,3-thiazol-5(4H)-thion (**1e**) [33].

1. Umsetzungen von 1,3-Thiazol-5(4H)-thionen mit 1,1,3,3-Tetramethyl-5-thia-7,8-diazaspiro[3.4]oct-7-en-2on (12a). Allgemeine Vorschrift. Frisch hergestelltes und gereinigtes 12a (277 mg, 1,4 mmol) und 1,3-Thiazol-5(4H)-thion 1 (1,0 mmol) wurden in 2 ml abs. THF gelöst und unter Rühren 3 h auf 50° erwärmt. Die Menge des freigesetzten N₂ wurde in einer Bürette bestimmt. Nach 3 h wurde jeweils keine N₂-Entwicklung mehr festgestellt; die Menge des N₂ entsprach in allen Fällen den Erwartungen (ca. 35 ml). Dann wurde das THF abgedampft, das Gemisch in CDCl₃, gelöst und mittels ¹H-NMR analysiert. Zur quantitativen Bestimmung der Produkte wurde 1,1,2,2-Tetrachloroethan als Standard zugesetzt. Anschliessend erfolgte die Aufarbeitung mittels Dickschichtchromatographie an Kieselgel (Laufmittel: Gemische von CH₂Cl₂, Pentan und Aceton) und Umkristallisation aus EtOH mit geringen Zusätzen von CH₂Cl₂ oder Et₂O.

1.1. 1,1,3,3,10,10-Hexamethyl-8-phenyl-5,7,12-trithia-9-azadispiro[3.1.4.2]dodec-8-en-2-on (14a). Aus 12a und 1a. Laut NMR ist nur ein Produkt (93%) gebildet worden; die Ausbeute wurde anhand des *AB*-Systems bei 3,32/3,14 ppm bestimmt. Chromatographische Reinigung mit CH₂Cl₂/Pentan 1:1: 340 mg (87%) 14a als farbloses, zähes Öl; kristallisiert aus MeOH in farblosen Plättchen (270 mg, 69%). Schmp. 108–109°. IR: 2983*m*, 2970*m*, 2938*m*, 1783*s* (C=O), 1593*m* (C=N), 1578*m*, 1445*m*, 1370*s*, 955*m*, 760*s*, 695*s*, 618*s*. ¹H-NMR: 7,85–7,6 (*m*, 2 arom. H); 7,5–7,2 (*m*, 3 arom. H); 3,32, 3,14 (*AB*, *J* = 12,0, CH₂); 1,60, 1,50 (2*s*, 2 CH₃-C(10)); 1,36, 1,32, 1,30 (3*s*, 1:1:2, 4 CH₃). ¹³C-NMR: 219,5 (*s*, C=O); 165,3 (*s*, C=N); 133,4 (*s*, 1 arom. C); 131,4, 128,5, 128,0 (3d, 5 arom. C); 93,8, 78,8, 74,7 (3*s*, 2 spiro-C, (CH₃)₂C); 67,0, 66,1 (2*s*, C(1), C(3)); 49,1 (*t*, CH₂); 26,1, 25,1, 24,3, 22,8, 22,0 (5*q*, 1:1:1:2:1, 6 CH₃). MS: 321 (9, [*M* - (CH₃)₂C=C=O]⁺), 203 (23), 145 (100, [C₆H₅C=N=C(CH₃)₂]⁺), 104 (26, [C₆H₅C=NH]⁺), 100 (18), 86 (11), 85 (16), 70 (6, [(CH₃)₂C=C=O]⁺). Anal. ber. für C₂₀H₂₅NOS₃ (391,62): C 61,34, H 6,43, N 3,57, S 24,56; gef.: C 61,28, H 6,35, N 3,71, S 24,41.

1.2. 8-Benzyl-1,1,3,3,10,10-hexamethyl-5,7,12-trithia-9-azadispiro[3.1.4.2]dodec-8-en-2-on (14b). Aus 12a und 1b. Laut NMR ist nur ein Produkt (84%) gebildet worden; die Ausbeute wurde anhand des AB-Systems bei

3,31/3,09 ppm bestimmt. Chromatographie mit CH₂Cl₂/Aceton 98:2: 310 mg (77%) **14b** als farbloses, zähes Öl. IR: 2969*m*, 2928*m*, 1786*s* (C=O), 1614*s* (C=N), 1600*m*, 1496*m*, 1460*m*, 1454*m*, 1380*s*, 1363*m*, 1030*m*, 950*m*, 702*m*. ¹H-NMR: 7,20 (br. *s*, 5 arom. H); 3,76, 3,66 (*AB*, *J* = 13,5, PhCH₂); 3,31, 3,09 (*AB*, *J* = 12,0, CH₂); 1,55, 1,42 (2*s*, 2 CH₃-C(10)); 1,32, 1,30, 1,22 (3*s*, 1:1:2, 4 CH₃). ¹³C-NMR: 219,2 (*s*, C=O); 167,6 (*s*, C=N); 135,5 (*s*, 1 arom. C); 128,9, 128,6, 127,1 (3*d*, 5 arom. C); 94,7, 78,0, 74,6 (3*s*, 2 spiro-C, (CH₃)₂C); 66,8, 66,1 (2*s*, C(1), C(3)); 48,7 (*t*, CH₂); 41,6 (*t*, PhCH₂); 25,8, 24,9, 24,1, 22,8, 22,6, 21,9 (6*q*, 6 CH₃). Anal. ber. für C₂₁H₂₇NOS₃ (405,65): C 62,18, H 6,71, N 3,45, S 23,71; gef.: C 61,66, H 6,23, N 3,42, S 23,70.

1.3. 8-(tert-Butyl)-1,1,3,3,10,10-hexamethyl-5,7,12-trithia-9-azadispiro[3.1.4.2]dodec-8-en-2-on (14c). Aus 12a und 1c. Laut NMR ist nur ein Cycloaddukt (85%) gebildet worden; die Ausbeute wurde anhand des *AB*-Systems bei 3,34/3,10 ppm bestimmt. Als Nebenprodukt wurde 4,4,6,6-Tetramethyl-1-thiaspiro[2.3]hexan-5on (s. [16a]) nachgewiesen. Nach dem Abdampfen des Lsgm. wurde mit wenig EtOH digeriert: 212 mg (57%) 14c. Nach 2 d Stehen bei RT. wurden aus der Mutterlauge weitere 80 mg 14c abfiltriert (total 292 mg (79%)). Umlösen aus EtOH ergab 221 mg (60%) reines 14c. Farblose Nadeln. Schmp. 123–124°. IR: 2968m, 1782s (C=O); 1613m (C=N). ¹H-NMR: 3,34, 3,10 (*AB*, *J* = 12,0, CH₂); 1,50, 1,40, 1,35, 1,32 (4s, 1:2:1; 2, 2 CH₃-C(10), 2 CH₃-C(1), 2 CH₃-C(3)); 1,20 (*s*, *t*-Bu). ¹³C-NMR: 219,5 (*s*, C=O); 176,8 (*s*, C=N); 93,3, 78,0, 74,6 (3*s*, 2 spiro-C, (CH₃)₂C); 66,8, 66,1 (2*s*, C(1), C(3)); 48,8 (*t*, CH₂); 37,9 (*s*, (CH₃)₃C); 28,8 (*q*, (CH₃)₃C); 25,9, 25,0, 24,1, 22,9, 22,6, 22,1 (*6q*, 6 CH₃). MS: 371 (0,1, *M*⁺), 301 (28, [*M* - (CH₃)₂C=C=O]⁺), 183 (39, C₁₀H₁₇NS), 125 (100, [(CH₃)₃CC=N=C(CH₃)₂I⁺), 100 (30), 69 (15). Anal. ber. für C₁₈H₂₉NOS₃ (371,62): C 58,17, H 7,86, N 3,77, S 25,88; gef.: C 58,10, H 7,67, N 3,77, S 25,88.

1.4. 1,1,3,3-Tetramethyl-12-phenyl-5,14,16-trithia-12-azatrispiro[3.1.0.4.3.2]hexadec-12-en-2-on (14d). Aus 12a und 1d. Laut NMR ist nur ein Produkt (ca. 100%) gebildet worden; die Ausbeute wurde anhand des AB-Systems bei 3,36/3,23 ppm bestimmt. Chromatographie mit CH₂Cl₂/Pentan 1:1:360 mg (86%) 14d als farbloses, zähes Öl, das nach mehreren Tagen erstarrte. Umlösen aus MeOH ergab 320 mg (77%) 14d. Farbloses Pulver. Schmp. 105–107°. IR: 2967s, 2927m, 2868m, 1786s (C=O), 1593m (C=N), 1576m, 1460s, 1447s, 1379m, 1364m, 1257s, 1028s, 948s, 767s, 691s. ¹H-NMR: 7,8–7,6 (m, 2 arom. H); 7,4–7,2 (m, 3 arom. H); 3,36, 3,23 (AB, $J = 12,0, CH_2$); 2,2–1,75 (m, –(CH₂)₄–); 1,42, 1,38, 1,35 (3s, 1:1:2, 4 CH₃). ¹³C-NMR: 219,2 (s, C=O); 164,9 (s, C=N); 133,6 (s, 1 arom. C); 131,2, 128,4, 127,9 (3d, 5 arom. C); 92,1, 89,6, 74,9 (3s, 3 spiro-C); 67,0, 66,0 (2s, C(1)), C(3)); 49,6 (t, C(15)); 39,0, 33,9 (2t, 2 CH₂); 25,0, 24,8 (2q, 2 CH₃); 24,3 (t, 2 CH₂); 22,7, 22,0 (2q, 2 CH₃). Anal. ber. für C₂₂H₂₇NOS₃ (417,66): C 63,27, H 6,51, N 3,35, S 23,03; gef.: C 63,43, H 6,49, N 3,05, S 23,03.

1.5. 1,1,3,3,10-Pentamethyl-8,10-diphenyl-5,7,12-trithia-9-azadispiro[3.1.4.2]dodec-8-en-2-on (14e). Aus 12a und 1e. Laut NMR sind zwei isomere Produkte (90 bzw. 10%) gebildet worden; die Ausbeuten wurden anhand der Me-Signale bei 1,97 und 0,83 ppm bestimmt. Chromatographie mit CH₂Cl₂/Pentan 1:1 (3×): Fraktion I (grösserer R_{Γ} Wert): 314 mg (69%) 14e–I als farbloses Harz; Fraktion II (kleinerer R_{Γ} Wert): 25 mg (5%) eines 1:9)-Gemisches 14e–I/14e–II als farbloses, zähes Öl.

Fraktion I erstarrte nach einigen Tagen und wurde aus MeOH/CH₂Cl₂ umkristallisiert: **14e–I**. Farblose Kristalle. Schmp. 125–126°. IR: 2969*m*, 2928, 1784*s* (C=O), 1596*m* (C=N), 1576*m*, 1447*m*, 946*s*, 769*s*. ¹H-NMR: 7,9–7,6 (*m*, 4 arom. H); 7,5–7,15 (*m*, 6 arom. H); 2,73, 2,39 (*AB*, *J* = 12,0, CH₂); 1,97, 1,44, 1,37, 1,27, 1,09 (5*s*, 5 CH₃). ¹³C-NMR: 218,9 (*s*, C=O); 167,3 (*s*, C=N); 140,9, 133,3 (2*s*, 2 arom. C); 131,5, 128,5, 128,1, 127,9, 126,8 (5*d*, 10 arom. C); 93,6, 83,8, 74,7 (3*s*, 2 spiro-C, Ph(CH₃)C); 67,8, 65,0 (2*s*, C(1), C(3)); 52,0 (*t*, CH₂); 25,9, 25,0, 24,7, 21,8, 21,6 (5*q*, 5 CH₃). Anal. ber. für C₂₅H₂₇NOS₃ (453,69): C 66,18, H 6,00, N 3,09, S 21,20; gef.: C 66,25, H 5,79, N 3,07, S 21,25.

Fraktion II wurde erneut chromatographisch gereinigt: 18 mg (4%) **14e–II**. Farbloses, zähes Öl. ¹H-NMR: 7,95–7,85 (*m*, 2 arom. H); 7,65–7,55 (*m*, 2 arom. H); 7,55–7,25 (*m*, 6 arom. H); 3,585, 3,575 (*AB*, *J* = 12,0, CH₂); 1,81, 1,28, 1,27, 1,25, 0,83 (5s, 5 CH₃). ¹³C-NMR: 220,0 (*s*, C=O); 164,7 (*s*, C=N); 142,0, 133,6 (2*s*, 2 arom. C); 131,5, 128,6, 128,1, 128,0, 126,4 (5d, 10 arom. C); 96,5, 83,7, 74,7 (3*s*, 2 spiro-C, Ph(CH₃)C); 66,9, 66,0 (2*s*, C(1), C(3)); 47,1 (*t*, CH₂); 25,3, 23,3, 22,9, 22,3, 22,1 (5*q*, 5 CH₃).

2. Umsetzungen von 1,3-Thiazol-5(4H)-thionen mit 2,5-Dihydro-2,2-diphenyl-1,3,4-thiadiazol (12b). Allgemeine Vorschrift. Frisch gereinigtes (Chromatographie an Kieselgel, umgelöst aus Pentan bei -76° ; Schmp. 56–57°), kristallines Thiobenzophenon (238 mg, 1,2 mmol) wurde in 2 ml Et₂O gelöst, auf -65° gekühlt und unter Rühren mit einer etherischen Lsg. von CH₂N₂ versetzt, bis die blaue Farbe des Thiobenzophenons verschwand. Überschüssiges CH₂N₂ wurde bei -65° i. V. entfernt und zum Rückstand eine Lsg. von 1 mmol 1 in 3 ml CH₂Cl₂ gegeben. Das Gemisch wurde auf -30° erwärmt und die N₂-Entwicklung volumetrisch verfolgt. Nach 3 h war diese beendet, die Lsgm. wurden abgedampft und der Rückstand mittels ¹H-NMR (1,1,2,2-Tetrachloroethan als Standard) analysiert. Die Aufarbeitung erfolgte mittels Dickschicht-Chromatographie an Kieselgel (Gemische von CH₂Cl₂ und Pentan) und Umkristallisation aus MeOH mit wenig CH₂Cl₂.

2.1. 9,9-Dimethyl-4,4,7-triphenyl-1,3,6-trithia-8-azaspiro[4.4]non-7-en (**15a**). Aus **12b** und **1a**. Laut NMR ist nur ein Produkt (93%) gebildet worden; die Ausbeute wurde anhand des *AB*-Systems bei 3,66/3,52 ppm bestimmt. Chromatographie mit CH₂Cl₂/Pentan 3:2: 340 mg (78%) **15a** als farbloses, zähes Öl, das bei RT. kristallisierte. Waschen mit Pentan lieferte 325 mg (75%) farblose Kristalle. Schmp. 160–162°. Für die Röntgen-Kristallstrukturbestimmung wurde aus i-PrOH umkristallisiert. IR: 1600m (C=N), 1578m, 1490s, 1450s, 1200s, 960s, 758m, 728s, 710s, 695s. ¹H-NMR: 7,7–7,4 (*m*, 15 arom. H); 3,66, 3,52 (*AB*, *J* = 10,0, CH₂); 1,62, 1,47 (2s, 2 CH₃). ¹³C-NMR: 164,7 (s, C=N); 140,8, 133,5, 130,9 (3s, 3 arom. C); 130,4, 129,5, 128,8, 128,2, 128,0, 127,7, 127,1, 126,7 (8d, 15 arom. C); 83,5, 78,2, 75,7 (3s, spiro-C, (CH₃)₂C, Ph₂C); 29,9 (*t*, CH₂); 28,5, 23,5 (2*q*, 2 CH₃). MS: 433 (1, *M*⁺), 210 (9). 146 (8), 145 (100, $[C_{6}H_5C=N=C(CH_3)_2]^+$), 104 (22, $[C_{6}H_5C=NH]^+$), 77 (7). Anal. ber. für C₂₅H₂₃NS₃ (433,66): C 69,24, H 5,34, N 3,23, S 22,18; gef.: C 69,38, H 5,12, N 3,18, S 22,14.

2.2. 7-Benzyl-9,9-dimethyl-4,4-diphenyl-1,3,6-trithia-8-azaspiro[4.4]non-7-en (15b). Aus 12b und 1b. Laut NMR ist nur ein Produkt (93%) gebildet worden; die Ausbeute wurde anhand des *s* bei 1,33 ppm bestimmt. Chromatographie mit CH₂Cl₂: 405 mg (90%) 15b als farbloses, zähes Öl, das bei RT. kristallisierte. Waschen mit MeOH lieferte 340 mg (76%) farblose Kristalle vom Schmp. 146–148°. Umkristallisation aus EtOH mit wenig CH₂Cl₂: 270 mg (60%) analysenreines 15b. Farblose Nadeln. Schmp. 149–150°. IR: 1619*m* (C=N), 1600*m*, 1494*s*, 1453*m*, 1442*m*, 1220*w*, 1159*w*, 729*s*, 699*s*. ¹H-NMR: 7,7–7,4, 7,3–6,9 (2*m*, 15 arom. H); 3,85–3,15 (2 schlecht aufgelöste *AB*, CH₂); 1,55, 1,33 (2*s*, 2 (CH₃)₂C). ¹³C-NMR: 167,2 (*s*, C=N); 144,0 (br. *s*, 1 arom. C); 141,0, 135,1 (2*s*, 2 arom. C); 130,2 129,6, 129,3, 128,9, 128,5, 128,3, 127,9, 127,6, 127,4, 127,0, 126,6 (10d, 15 arom. C); 95,0, 82,5, 75,6 (3*s*, spiro-C, (CH₃)₂C, Ph₂C); 41,4 (*t*, PhCH₂); 29,7 (*t*, CH₂); 28,6, 23,7 (2*q*, 2 CH₃). MS: 447 (2, *M*⁺), 212 (25, [(C₆H₅)₂C=S-CH₂]⁺), 198 (10, [(C₆H₅)₂C=S]⁺), 180 (23, [(C₆H₅)₂C=CH₂]⁺), 179 (20), 178 (24), 165 (47, [(C₆H₅)₂C=H)⁻), 159 (100, [C₆H₅CH₂C=N=C(CH₃)₂]⁺), 103 (14), 91 (32), 78 (2). Anal. ber. für C₂₆H₂₅NS₃ (447,68): C 69,76, H 5,63, N 3,13, S 21,49; gef.: C 69,57, H 5,78, N 2,96, S 21,47.

2.3. 7-(tert-*Butyl*)-9,9-dimethyl-4,4-diphenyl-1,3,6-trithia-8-azaspiro[4.4]non-7-en (15c). Aus 12b und 1c. Laut NMR ist nur ein Produkt (94%) gebildet worden; die Ausbeute wurde anhand des s bei 3,60 ppm bestimmt. Chromatographie mit Pentan/CH₂Cl₂: 360 mg (87%) 15c als farbloses, zähes Öl, das aus Et₂O/MeOH bei RT. kristallisierte: 340 mg (82%) farblose Kuben. Schmp. 136–138°. IR: 1607s (C=N), 1490s, 1476m, 1442s, 1383s, 1359s, 1203m, 1160s, 1102s, 745s, 722s, 702s. ¹H-NMR: 7,7–7,45, 7,3–7,0 (2m, 10 arom. H); 3,60 (br. s, CH₂); 1,57 (s, CH₃–C(9)); 1,10 (2 br. s, CH₃–C(9), t-Bu). ¹³C-NMR: 175,6 (s, C=N); 144,8 (br. s, 1 arom. C); 141,7 (s, 1 arom. C); 130,5, 129,6, 127,7, 127,1, 126,8 (5d, 10 arom. C); 94,5, 82,7, 75,1 (3s, spiro-C, (CH₃)₂C, Ph₂C); 37,9 (s, (CH₃)₃C); 29,3 (t, CH₂); 28,6 (q, CH₃–C(9), (CH₃)₃C); 23,9 (q, CH₃–C(9)). Anal. ber. für C₂₃H₂₇NS₃ (413,67): C 66,78, H 6,58, N 3,38, S 23,25; gef.: C 67,06, H 6,31, N 3,46, S 23,05.

2.4. 4,4,12-Triphenyl-1,3,13-trithia-11-azadispiro[4.0.4.3]tridec-11-en (**15d**). Aus **12b** und **1d**. Laut NMR ist nur ein Produkt (89%) gebildet worden; die Ausbeute wurde anhand des br. *s* bei 3,70 ppm bestimmt. Chromatographie mit Pentan/CH₂Cl₂ 1:1: 320 mg (70%) **15d** als farbloses, zähes Öl, das bei RT. erstarrte. Umlösen aus MeOH/CH₂Cl₂ ergab 240 mg (52%) analysenreines **15d**. Farblose Nadeln. Schmp. 174–175°. IR: 1660m (C=N), 1598m (br.), 1557m, 1490m, 1447m, 1278m, 908s, 733s, 702s. ¹H-NMR: 7,8–6,9 (m, 15 arom. H); 3,70 (br. *s*, CH₂); 3,0–2,5 (m, 1 CH₂); 2,2–1,35 (m, 3 CH₂). ¹³C-NMR: 163,3 (*s*, C=N); 144,2 (br. *s*, 1 arom. C); 140,9, 137,6 (2*s*, 2 arom. C); 133,9, 132,3, 130,7, 129,9, 128,8, 128,2, 127,9, 127,7, 127,2, 126,7, 126,5 (11d, 15 arom. C); 93,9, 93,0, 76,0 (3*s*, 2 spiro-C, Ph₂C); 41,0, 33,7 (2 br. Signale, 2 CH₂); 30,4 (*t*, C(2)); 25,3, 23,5 (*zt*, 2 CH₂). Anal. ber. für C₂₇H₂₅NS₃ (459,70): C 70,54, H 5,84, N 3,05, S 20,93; gef.: C 70,33, H 5,54, N 3,15, S 20,94.

2.5. 9-Methyl-4,4,7,9-tetraphenyl-1,3,6-trithia-8-azaspiro[4.4]non-7-en (15e). Aus 12b und 1e. Laut NMR sind zwei isomere Produkte (33 bzw. 58%) gebildet worden; die Ausbeuten wurden anhand des s bei 1,92 ppm und des br. Signals bei 1,7–1,2 ppm bestimmt. Chromatographie mit Pentan/CH₂Cl₂ 1:1: Fraktion I (grösserer R_{Γ} Wert): 140 mg (28%) 15e–1 als farblose Kristalle; Fraktion II (kleinerer R_{Γ} Wert): 295 mg (60%) 15e–1 als zähes Öl, das bei RT. erstarrte.

Fraktion I wurde aus MeOH/CH₂Cl₂ umgelöst: 82 mg (17%) farblose Nadeln. Schmp. (Zers.) 191–192°. IR: 1614*m* (br.) (C=N), 1578*w*, 1490*s*, 1447*s*, 1442*s*, 1265*m*, 956*m*, 962*m*, 763*s*, 702*s*, 693*s*. ¹H-NMR: 8,1–6,6 (*m*, 20 arom. H); 3,77, 3,40 (*AB*, *J* = 10,0, CH₂); 1,92 (*s*, CH₃). ¹³C-NMR: 164,2 (*s*, C=N); 146,6, 140,6, 137,4, 133,7 (4*s*, 4 arom. C); 130,9, 130,5, 128,7, 128,2, 127,9, 127,6, 126,9, 126,7, 126,6, 126,0, 125,3 (11*d*, 20 arom. C); 93,6, 88,2, 77,0 (3*s*, spiro-C, Ph(CH₃)C, Ph₂C); 31,4 (*q*, CH₃); 30,8 (*t*, CH₂). MS: 212 (18, $[(C_6H_5)_2C=S-CH_2]^{++}$), 207 (100, $[C_6H_5C=N=C(C_6H_5)CH_3]^{++}$), 206 (26), 198 (11, $[(C_6H_5)_2C=S]^{++}$), 180 (27, $[(C_6H_5)_2C=CH_2]^{++}$), 179 (23), 178 (24), 165 (49, $[(C_6H_5)_2CH]^{++}$), 121 (17, $[C_6H_5CS]^{+}$), 104 (26), 103 (23), 78 (11), 77 (15). Anal. ber. für $C_{30}H_{25}NS_3$ (495,73): C 72,69, H 5,08, N 2,83, S 19,40; gef.: C 72,04, H 5,13, N 2,86, S 19,40.

Fraktion II wurde aus AcOEt umgelöst: 260 mg (52%) farblose, feine Nadeln. Schmp. (Zers.) 166–167°. IR: 1608*m* (C=N), 1577*w*, 1490*m*, 1446*s*, 1260*m*, 958*m*, 767*m*, 692*s*. ¹H-NMR: 7,9–7,6, 7,55–6,95 (2*m*, 20 arom. H); 3,8–2,9 (br., CH₂); 1,75–1,25 (br., CH₃). ¹H-NMR ((D₆)DMSO, 80°): 7,85–7,7, 7,6–7,1 (2*m*, 20 arom. H); 3,58,

3,25 (*AB* (br.), $J \approx 10$, CH₂); 1,60 (br. *s*, CH₃). ¹³C-NMR: 164,4 (*s*, C=N); 142,6, 133,2 (2*s*, 4 arom. C); 132,3, 131,3, 130,8, 130,6, 130,3, 130,0, 128,4, 128,2, 128,1, 127,9, 127,3, 126,9, 126,6, 126,4 (14d, 20 arom. C); 95, 90 (2 br., spiro-C, Ph(CH₃)C, Ph₂C); 29,7 (*t*, CH₂); 24,4 (br. *q*, CH₃). MS: 212 (18, $[(C_6H_5)_2C=S-CH_2]^+$), 207 (100, $[C_6H_5C=N=C(C_6H_5)CH_3]^+$), 206 (32), 198 (10, $[(C_6H_5)_2C=S]^+$), 180 (38, $[(C_6H_5)_2C=CH_2]^+$), 179 (31), 178 (33), 165 (58, $[(C_6H_5)_2CH]^+$), 121 (18, $[C_6H_5CS]^+$), 104 (29), 103 (29), 78 (14), 77 (20). Anal. ber. für C₃₀H₂₅NS₃ (495,73): C 72,69, H 5,08, N 2,83, S 19,40; gef.: C 72,69, H 5,19, N 2,81, S 19,20.

3. Umsetzung von 1a mit 1,4-Dihydro-1,3,4-thiadiazol-2-spiro-2'-tricyclo[3.3.1. $I^{3,7}$]decan (12c). Frisch umkristallisiertes 12c (250 mg, 1,4 mmol) und 221 mg (1,0 mmol) 1a wurden in 2 ml abs. THF gelöst und unter Rühren 3 h auf 50° erwärmt. Nach dieser Zeit war die N₂-Entwicklung beendet. Dann wurde das THF abgedampft, der Rückstand in CCl₄ aufgenommen, das Lsgm. erneut abgedampft, in CDCl₃ gelöst, 1,1,2,2-Tetrachloroethan als Standard zugesetzt und mittels ¹H-NMR analysiert. Laut NMR ist nur ein Produkt (94%) gebildet worden; die Ausbeute wurde anhand des *AB*-Systems bei 3,56/3,10 ppm bestimmt. Säulen-Chromatographie an neutralem Alox mit Pentan/CH₂Cl₂ 3:4 ergab 320 mg (80%) 4,4-Dimethyl-3-phenyl-1,3-thiazol-5-spiro-4'-1,3-thiolan-2'-spiro-2"-tricyclo[3.3.1.1^{3,7}]decan (16) als farbloses, zähes Harz. Alle Versuche zur Umkristallisation misslangen. IR: 2905s, 2850m, 1590m (C=N), 1572m, 1445m, 1255m, 1200s, 1148m, 1092m, 955m, 938m, 763s, 688m. ¹H-NMR : 7,85-7,6 (m, 2 arom. H); 7,5-7,15 (m, 3 arom. H); 3,56, 3,10 (*AB*, *J* = 12,0, CH₂); 2,45-1,45 (m, 14 H des Adamantan); 1,53 (s, 2 CH₃). ¹³C-NMR: 166,0 (s, C=N); 133,5 (s, 1 arom. C); 131,2, 128,4, 128,0 (3d, 5 arom. C); 93,2, 78,8, 77,0 (3s, 2 spiro-C, C(4)); 47,8 (t, CH₂); 42,2, 41,9, 37,9, 37,6, 37,0, 35,8, 35,5, 26,4, 26,2, 26,1 (10 Signale des Adamantan-Gerüstes); 22,6 (g, 2 CH₃). MS: 401 (3, *M*⁺), 145 (100, [C₆H₅C=N=C(CH₃)₂]⁺), 104 (15, C₆H₅C=NH⁺). Anal. ber. für C₂₂H₂₇NS₃ (401,66): C 65,79, H 6,78, N 3,49, S 23,95; gef.: C 65,48, H 6,93, N 3,29, S 23,78.

LITERATURVERZEICHNIS

- [1] C. Jenny, H. Heimgartner, Helv. Chim. Acta 1986, 69, 374.
- [2] P. Wipf, C. Jenny, H. Heimgartner, Helv. Chim. Acta 1987, 70, 1001.
- [3] H. Heimgartner, Croatica Chem. Acta 1986, 59, 237.
- [4] H. Heimgartner, Phosphorus, Sulfur, Silicon 1991, 58, 281.
- [5] D. Noël, J. Vialle, Bull. Soc. Chim. Fr. 1967, 2239; D.J. Greig, M. McPherson, R.M. Paton, J. Crosby, J. Chem. Soc., Perkin Trans. 1 1985, 1205.
- [6] F. Boberg, J. Knoop, Liebigs. Ann. Chem. 1967, 708, 148; Y. Poirier, Bull. Soc. Chim. Fr. 1968, 1203; M. Maguet, Y. Poirier, J. Teste, ibid. 1970, 1503.
- [7] S. Pekcan, H. Heimgartner, Helv. Chim. Acta 1988, 71, 1673.
- [8] I. Kalwinsch, X. Li, J. Gottstein, R. Huisgen, J. Am. Chem. Soc. 1981, 103, 7032.
- [9] G. Mlostoń, R. Huisgen, Heterocycles 1985, 23, 2201.
- [10] a) R. Huisgen, C. Fulka, I. Kalwinsch, X. Li, G. Mlostoń, J. Moran, A. Pröbstl, Bull. Soc. Chim. Belg. 1984, 93, 511; b) R. Huisgen, E. Langhals, G. Mlostoń, T. Oshima, J. Rapp, Lect. Heterocycl. Chem. 1987, 9, S-1; c) R. Huisgen, in 'Advances in Cycloaddition', Ed. D. P. Curran, Jai Press Inc., London, 1988, Vol. 1, S. 1.
- [11] E. Bergmann, M. Magat, D. Wagenberg, Ber. Dtsch. Chem. Ges. 1930, 63, 2576.
- [12] A. Schönberg, D. Cernik, W. Urban, Ber. Dtsch. Chem. Ges. 1931, 64, 2577.
- [13] A. Schönberg, B. König, E. Singer, Chem. Ber. 1967, 100, 767.
- [14] M. Aono, Y. Terao, K. Achiwa, Chem. Lett. 1987, 1851.
- [15] a) Y. Terao, M. Tanaka, N. Imai, K. Achiwa, *Tetrahedron Lett.* 1985, 26, 3011; b) M. Aono, C. Hyodo, Y. Terao, K. Achiwa, *ibid.* 1986, 27, 4039; c) Y. Terao, M. Aono, I. Taka-hashi, K. Achiwa, *Chem. Lett.* 1986, 2089; d) Y. Terao, M. Aono, K. Achiwa, *Heterocycles* 1986, 24, 1571.
- [16] a) R. Huisgen, G. Mlostoń, C. Fulka, *Heterocycles* 1985, 23, 2207; b) R. Huisgen, J. Penelle, G. Mloston, A. Buyle-Padias, H. K. Hall, Jr., J. Am. Chem. Soc., im Druck.
- [17] R. Huisgen, G. Mlostoń, Tetrahedron Lett. 1985, 26, 1049.
- [18] G. Mlostoń, Habilitationsschrift, Universität Łódź, 1991.
- [19] C. K. Johnson, ORTEP II. Report ORNL-5138. Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1976.
- [20] N. Walker, D. Stuart, Acta Crystallogr., Sect. A 1983, 39, 158.

- [21] G. M. Sheldrick, SHELXS-86. A program for crystal structure solution, in 'Crystallographic Computing 3', Eds. G. M. Sheldrick, C. Krüger und R. Goddard, Oxford University Press, Oxford, 1985, S. 175.
- [22] W.R. Busing, K.O. Martin, H.A. Levy, ORFLS. A FORTRAN Crystallographic Least Squares Program, Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1962.
- [23] D. T. Cromer, J. T. Waber, 'International Tables for X-Ray Crystallography', The Kynoch Press, Birmingham, 1974, Vol. IV, pp. 71–98.
- [24] R. F. Stewart, E. R. Davidson, W. T. Simpson, J. Chem. Phys. 1965, 42, 3175.
- [25] J.A. Ibers, W.C. Hamilton, Acta Crystallogr. 1964, 17, 781.
- [26] D. T. Cromer, 'International Tables for X-Ray Crystallography', The Kynoch Press, Birmingham, 1974, Vol. IV, pp. 149–150.
- [27] TEXSAN, TEXRAY Single Crystal Structure Analysis Package, Version 5.0. Molecular Structure Corp., The Woodlands, Texas, 1989.
- [28] a) R. Huisgen, X. Li, Tetrahedron Lett. 1983, 24, 4185; b) R. Huisgen, E. Langhals, ibid. 1989, 39, 5369.
- [29] P. Tromm, H. Heimgartner, Helv. Chim. Acta 1988, 71, 2071.
- [30] N. Imai, H. Tokiwa, M. Aono, Y. Terao, Y. Akahari, K. Achiwa, *Heterocycles* 1986, 24, 2423; Y. Terao, M. Aono, K. Achiwa, *ibid.* 1988, 27, 981.
- [31] X. Li, R. Huisgen, Tetrahedron Lett. 1983, 24, 4181.
- [32] D. Obrecht, R. Prewo, J. H. Bieri, H. Heimgartner, Helv. Chim. Acta 1982, 65, 1825.
- [33] C. Jenny, H. Heimgartner, Helv. Chim. Acta 1986, 69, 374.